# Computer Science 294 Lecture 11 Notes

Daniel Raban

February 21, 2023

## 1 Proof of Håstad's Switching Lemma

### 1.1 Argument via encoding

Last time we introduced Håstad's switching lemma.

**Lemma 1.1** (Håstad's switching lemma). Suppose f is a width w DNF, and let  $(J, Z) \sim \mathcal{R}_p$ . Then for all k,

 $\mathbb{P}(\text{Decision Tree Depth}(f_{J,Z}) \ge k) \le (5pw)^k.$ 

We want to think of  $p \approx 1/(10w)$  so that we get exponential decay in k. The argument we will give is not Håstad's original argument, and we will only get a bound of  $(9pw)^k$ . Here is the idea of the argument.

Let the set of bad restrictions be BAD =  $\{(J, z) : DT \operatorname{depth}(f_{J,z}) \geq k\}$ . We want to show that  $\mathbb{P}_{(J,Z)\sim\mathcal{R}_p}((J,Z)\in BAD)$  is small. The naive idea is that to show that  $\mathbb{P}(A)$  is small, it suffices to show that there exists some event B such that  $\mathbb{P}(B) \geq M\mathbb{P}(A)$  for some large M; therefore,

$$\mathbb{P}(A) \le \frac{\mathbb{P}(B)}{M} \le \frac{1}{M}.$$

The main step in the proof will be the prove the following encoding lemma.

Lemma 1.2 (Encoding lemma). There exists an injective encoding

$$E: BAD \to (all \ restrictions) \times [2w]^k \times \{\pm 1\}^k.$$

Moreover,

$$E(\rho) = (\rho \circ \sigma, \beta, \pi),$$

where  $\sigma$  is a restriction that fixes k additional variables.

Here, we should think of the  $[2w]^k \times {\pm 1}^k$  part as extra information that would allow E to be 1 to 1.

For any fixed restriction  $\rho = (J, z)$ , we denote by the **weight** wt( $\rho$ ) the probability to sample  $\rho$  when sampling from  $\mathcal{R}_p$ :

$$\operatorname{wt}(\rho) = p^{|J|} \left(\frac{1-p}{2}\right)^{n-|J|}$$

**Example 1.1.** If  $\rho = (*, *, +1, -1, +1)$ , then the weight is

$$\operatorname{wt}(\rho) = p^2 \left(\frac{1-p}{2}\right)^3.$$

For a set of restrictions S, the **weight** is

$$\operatorname{wt}(S) = \sum_{\rho \in S} \operatorname{wt}(\rho).$$

Proof of switching lemma from encoding lemma. Fix  $\beta, \pi$ . Consider the set

$$BAD_{\beta,\pi} = \{\rho \in BAD : \exists \rho' \text{ such that } E(\rho) = (\rho', \beta, \pi) \}.$$

Then the encoding  $E_1 : \rho \mapsto \rho \circ \sigma$  is still 1 to 1 on  $\text{BAD}_{\beta,\pi}$ . We will show that the probability of  $E_1(\text{BAD}_{\beta,\pi})$  is much bigger than the probability of  $\text{BAD}_{\beta,\pi}$ .



The weight of  $\rho = (J, z)$  is

$$\operatorname{wt}(\rho) = p^{|J|} \left(\frac{1-p}{2}\right)^{n-|J|}$$

while the weight of  $\rho \circ \sigma = (J', z')$  (with |J'| = |J| - k) is

$$\begin{split} \operatorname{wt}(\rho \circ \sigma) &= p^{|J'|} \left(\frac{1-p}{2}\right)^{n-|J'|} \\ &= p^{|J|-k} \left(\frac{1-p}{2}\right)^{n-|J|+k} \\ &= \operatorname{wt}(\rho) \left(\frac{1-p}{2p}\right)^k. \end{split}$$

Therefore,

wt(BAD<sub>$$\beta,\pi$$</sub>) = wt( $E_1(BAD_{\beta,\pi})$ )  $\left(\frac{2p}{1-p}\right)^k$ ,

and we get

$$\mathbb{P}((J,Z) \in \text{BAD}_{\beta,\pi}) = \mathbb{P}((J,Z) \in E_1(\text{BAD}_{\beta,\pi})) \cdot \left(\frac{2p}{1-p}\right)^k$$
$$\leq \left(\frac{2p}{1-p}\right)^k.$$

Taking a union bound over  $(\beta, \pi)$   $((4w)^k$  options),

$$\mathbb{P}_{(J,Z)\sim\mathcal{R}_p}((J,Z)\in \text{BAD}) \le (4w)^k \left(\frac{2p}{1-p}\right)^k$$
$$= \left(\frac{8pw}{1-p}\right)^k.$$

If  $p \ge 1/9$ , then we get

$$\mathbb{P}_{(J,Z)\sim\mathcal{R}_p}((J,Z)\in BAD) \le (9pw)^k.$$

If  $p \leq 1/9$ , then

$$\mathbb{P}_{(J,Z)\sim\mathcal{R}_p}((J,Z)\in \text{BAD}) \le \left(\frac{8pw}{8/9}\right)^k = (9pw)^k.$$

So we get the desired bound.

### 1.2 Proof of the encoding lemma

Here is an example of how the encoding works.

#### **Example 1.2.** Suppose we have

$$F = (x_1 \land x_2 \land x_3) \lor (x_3 \land x_4) \lor (x_5 \land \overline{x_1} \land x_3)$$

and  $\rho$  sets  $x_1$  to False and  $x_3$  to True; that is,  $\rho = (F, *, T, *, *)$ . Then F becomes

$$F|_{\rho} = x_4 \vee x_5$$

The decision tree for  $F|_{\rho}$  looks like



If we have k = 1 and  $\rho' = (F, *, T, T, *)$ , then we need to "leave a trail of breadcrumbs" to help us figure out what extra restriction we made and what the original  $\rho$  was.

Proof of the encoding lemma. First, we do the case of k = 1. The restriction  $\rho \in \text{BAD}$  iff DT depth $(f|_{\rho}) \geq 1$ . Equivalently,  $f|_{\rho}$  is not a constant function. Scanning from left t o right, find the first term  $T_1$  such that  $T_1|_{\rho} \not\equiv$  False. Let  $v_1$  be an alive variable in  $T_1$ , and let  $\sigma_1$  assign  $v_1$  so that  $T_1$  is still not falsified. In this case, the mapping should be

$$\rho \mapsto (\rho \circ \sigma_1, \text{ location of } v_1 \text{ in } T_1),$$

where the location of  $v_1$  in  $T_1$  is a number in  $\{1, 2, \ldots, w\}$ .

How do we decode this encoding? Given  $\rho' = \rho \circ \sigma$ , find the first term  $T'_1$  such that  $T'_1|_{\rho'} \not\equiv$  False. Then  $T_1 = T'_1$ . Identify  $v_1$  from the additional information. Make  $v_1$  alive again to recover  $\rho$ .

Now we treat the case of k > 1. Given a DNF F and a restriction  $\rho = (J, z)$ , let the **canonical decision tree** of  $(F, \rho)$  be

For i = 1, 2, ...,

Look through F for the first term  $T_i$  such that  $T_i|_{\rho} \not\equiv$  False.

If no such term exists, output False.

Otherwise: Let  $A_i$  be the set of alive variables in  $T_i$  under  $\rho$ .

Query all variables in  $A_i$ . Let  $\pi_i \in \{\pm 1\}^{|A_i|}$  be the answers. If  $T_i|_{\rho}$  is satisfied by  $\pi_i$ , then output True. Else, extend  $\rho$  by  $\rho \circ (\pi_i \to A_i)$ .

Here are two ways to assign variables:

- 1.  $\pi$ : the "adversarial" strategy that ensures  $\text{CDT}(F|_{\rho}) \geq k$ .
- 2.  $\sigma$ : the "breadcrumbs" strategy that allows decoding.

If  $\rho \in \text{BAD}$ , then DT depth $(f|_{\rho}) \geq k$ , so there exists a path of length  $\geq k$  in any decision tree for  $f|_{\rho}$ . In particular, there is a (partial) path of length = k in  $\text{CDT}(f|_{\rho})$ . Here is how we encode  $(F, \rho)$ :

Let  $T_1, T_2, \ldots, T_t$  be the terms considered in this path.

Let  $A_1, \ldots, A_t$  be the sets of variables set in each of these terms.

Let  $\pi_1 \in \{\pm 1\}^{|A_1|}, \pi_2 \in \{\pm 1\}^{|A_2|}, \ldots, \pi_t \in \{\pm 1\}^{|A_t|}$  be the values assigned to these variables along the path.

In our example,  $T_1 = (x_3 \wedge x_4)$ ,  $T_2 = (x_5 \wedge \overline{x_1} \wedge x_3)$ ,  $A_1 = \{x_4\}$ ,  $A_2 = \{x_5\}$ ,  $\pi_1 = F$ , and  $\pi_2 = T$ .

Calculate  $T_1, \ldots, T_t, A_1, \ldots, A_t, \pi_1, \ldots, \pi_t$ .

For i = 1, ..., t:

For each variable in  $A_i$ , encode as  $\beta_i$  its location in  $T_i \ (\in [w])$  and whether or not it is the last bit.

Set  $\sigma_i$  to be the assignment to  $A_i$  that doesn't falsify  $T_i|_{\rho}$  (usually set  $T_i|_{\rho}$  to true)

Replace  $\rho$  by  $\rho \circ \sigma_i$ .

In our example, we get  $\beta_1 = 2$ ,  $\beta_2 = 1$ ,  $\sigma_1 = (x_4 = T)$ , and  $\sigma_2 = (x_5 = T)$ . This gives

$$\rho = (F, *, T, *, *), \qquad \rho \circ \sigma_1 \circ \sigma_2 = (F, *, T, T, T).$$