Computer Science 294 Lecture 11 Notes

Daniel Raban

February 21, 2023

1 Proof of Håstad's Switching Lemma

1.1 Argument via encoding

Last time we introduced Håstad's switching lemma.
Lemma 1.1 (Håstad's switching lemma). Suppose f is a width $w D N F$, and let $(J, Z) \sim$ \mathcal{R}_{p}. Then for all k,

$$
\mathbb{P}\left(\text { Decision Tree Depth }\left(f_{J, Z}\right) \geq k\right) \leq(5 p w)^{k}
$$

We want to think of $p \approx 1 /(10 w)$ so that we get exponential decay in k. The argument we will give is not Håstad's original argument, and we will only get a bound of $(9 p w)^{k}$. Here is the idea of the argument.

Let the set of bad restrictions be $\mathrm{BAD}=\left\{(J, z): \mathrm{DT} \operatorname{depth}\left(f_{J, z}\right) \geq k\right\}$. We want to show that $\mathbb{P}_{(J, Z) \sim \mathcal{R}_{p}}((J, Z) \in \mathrm{BAD})$ is small. The naive idea is that to show that $\mathbb{P}(A)$ is small, it suffices to show that there exists some event B such that $\mathbb{P}(B) \geq M \mathbb{P}(A)$ for some large M; therefore,

$$
\mathbb{P}(A) \leq \frac{\mathbb{P}(B)}{M} \leq \frac{1}{M}
$$

The main step in the proof will be the prove the following encoding lemma.
Lemma 1.2 (Encoding lemma). There exists an injective encoding

$$
E: \mathrm{BAD} \rightarrow(\text { all restrictions }) \times[2 w]^{k} \times\{ \pm 1\}^{k}
$$

Moreover,

$$
E(\rho)=(\rho \circ \sigma, \beta, \pi),
$$

where σ is a restriction that fixes k additional variables.

Here, we should think of the $[2 w]^{k} \times\{ \pm 1\}^{k}$ part as extra information that would allow E to be 1 to 1 .

For any fixed restriction $\rho=(J, z)$, we denote by the weight $\mathrm{wt}(\rho)$ the probability to sample ρ when sampling from \mathcal{R}_{p} :

$$
\operatorname{wt}(\rho)=p^{|J|}\left(\frac{1-p}{2}\right)^{n-|J|}
$$

Example 1.1. If $\rho=(*, *,+1,-1,+1)$, then the weight is

$$
\mathrm{wt}(\rho)=p^{2}\left(\frac{1-p}{2}\right)^{3}
$$

For a set of restrictions S, the weight is

$$
\mathrm{wt}(S)=\sum_{\rho \in S} \mathrm{wt}(\rho) .
$$

Proof of switching lemma from encoding lemma. Fix β, π. Consider the set

$$
\operatorname{BAD}_{\beta, \pi}=\left\{\rho \in \operatorname{BAD}: \exists \rho^{\prime} \text { such that } E(\rho)=\left(\rho^{\prime}, \beta, \pi\right)\right\} .
$$

Then the encoding $E_{1}: \rho \mapsto \rho \circ \sigma$ is still 1 to 1 on $\mathrm{BAD}_{\beta, \pi}$. We will show that the probability of $E_{1}\left(\mathrm{BAD}_{\beta, \pi}\right)$ is much bigger than the probability of $\mathrm{BAD}_{\beta, \pi}$.

The weight of $\rho=(J, z)$ is

$$
\operatorname{wt}(\rho)=p^{|J|}\left(\frac{1-p}{2}\right)^{n-|J|},
$$

while the weight of $\rho \circ \sigma=\left(J^{\prime}, z^{\prime}\right)$ (with $\left.\left|J^{\prime}\right|=|J|-k\right)$ is

$$
\begin{aligned}
\mathrm{wt}(\rho \circ \sigma) & =p^{\left|J^{\prime}\right|}\left(\frac{1-p}{2}\right)^{n-\left|J^{\prime}\right|} \\
& =p^{|J|-k}\left(\frac{1-p}{2}\right)^{n-|J|+k} \\
& =\mathrm{wt}(\rho)\left(\frac{1-p}{2 p}\right)^{k}
\end{aligned}
$$

Therefore,

$$
\mathrm{wt}\left(\operatorname{BAD}_{\beta, \pi}\right)=\mathrm{wt}\left(E_{1}\left(\operatorname{BAD}_{\beta, \pi}\right)\right)\left(\frac{2 p}{1-p}\right)^{k},
$$

and we get

$$
\begin{aligned}
\mathbb{P}\left((J, Z) \in \mathrm{BAD}_{\beta, \pi}\right) & =\mathbb{P}\left((J, Z) \in E_{1}\left(\mathrm{BAD}_{\beta, \pi}\right)\right) \cdot\left(\frac{2 p}{1-p}\right)^{k} \\
& \leq\left(\frac{2 p}{1-p}\right)^{k}
\end{aligned}
$$

Taking a union bound over $(\beta, \pi)\left((4 w)^{k}\right.$ options $)$,

$$
\begin{aligned}
\mathbb{P}_{(J, Z) \sim \mathcal{R}_{p}}((J, Z) \in \mathrm{BAD}) & \leq(4 w)^{k}\left(\frac{2 p}{1-p}\right)^{k} \\
& =\left(\frac{8 p w}{1-p}\right)^{k} .
\end{aligned}
$$

If $p \geq 1 / 9$, then we get

$$
\mathbb{P}_{(J, Z) \sim \mathcal{R}_{p}}((J, Z) \in \mathrm{BAD}) \leq(9 p w)^{k} .
$$

If $p \leq 1 / 9$, then

$$
\mathbb{P}_{(J, Z) \sim \mathcal{R}_{p}}((J, Z) \in \mathrm{BAD}) \leq\left(\frac{8 p w}{8 / 9}\right)^{k}=(9 p w)^{k}
$$

So we get the desired bound.

1.2 Proof of the encoding lemma

Here is an example of how the encoding works.

Example 1.2. Suppose we have

$$
F=\left(x_{1} \wedge x_{2} \wedge x_{3}\right) \vee\left(x_{3} \wedge x_{4}\right) \vee\left(x_{5} \wedge \overline{x_{1}} \wedge x_{3}\right)
$$

and ρ sets x_{1} to False and x_{3} to True; that is, $\rho=(F, *, T, *, *)$. Then F becomes

$$
\left.F\right|_{\rho}=x_{4} \vee x_{5} .
$$

The decision tree for $\left.F\right|_{\rho}$ looks like

If we have $k=1$ and $\rho^{\prime}=(F, *, T, T, *)$, then we need to "leave a trail of breadcrumbs" to help us figure out what extra restriction we made and what the original ρ was.

Proof of the encoding lemma. First, we do the case of $k=1$. The restriction $\rho \in \mathrm{BAD}$ iff DT $\operatorname{depth}\left(\left.f\right|_{\rho}\right) \geq 1$. Equivalently, $\left.f\right|_{\rho}$ is not a constant function. Scanning from left to right, find the first term T_{1} such that $\left.T_{1}\right|_{\rho} \not \equiv$ False. Let v_{1} be an alive variable in T_{1}, and let σ_{1} assign v_{1} so that T_{1} is still not falsified. In this case, the mapping should be

$$
\rho \mapsto\left(\rho \circ \sigma_{1}, \text { location of } v_{1} \text { in } T_{1}\right),
$$

where the location of v_{1} in T_{1} is a number in $\{1,2, \ldots, w\}$.
How do we decode this encoding? Given $\rho^{\prime}=\rho \circ \sigma$, find the first term T_{1}^{\prime} such that $T_{1}^{\prime} \mid \rho^{\prime} \equiv \equiv$ False. Then $T_{1}=T_{1}^{\prime}$. Identify v_{1} from the additional information. Make v_{1} alive again to recover ρ.

Now we treat the case of $k>1$. Given a DNF F and a restriction $\rho=(J, z)$, let the canonical decision tree of (F, ρ) be

For $i=1,2, \ldots$,
Look through F for the first term T_{i} such that $\left.T_{i}\right|_{\rho} \not \equiv$ False.

If no such term exists, output False.
Otherwise: Let A_{i} be the set of alive variables in T_{i} under ρ.
Query all variables in A_{i}.
Let $\pi_{i} \in\{ \pm 1\}^{\left|A_{i}\right|}$ be the answers.
If $\left.T_{i}\right|_{\rho}$ is satisfied by π_{i}, then output True.
Else, extend ρ by $\rho \circ\left(\pi_{i} \rightarrow A_{i}\right)$.
Here are two ways to assign variables:

1. π : the "adversarial" strategy that ensures $\operatorname{CDT}\left(\left.F\right|_{\rho}\right) \geq k$.
2. σ : the "breadcrumbs" strategy that allows decoding.

If $\rho \in \mathrm{BAD}$, then $\mathrm{DT} \operatorname{depth}\left(\left.f\right|_{\rho}\right) \geq k$, so there exists a path of length $\geq k$ in any decision tree for $\left.f\right|_{\rho}$. In particular, there is a (partial) path of length $=k$ in $\operatorname{CDT}\left(\left.f\right|_{\rho}\right)$. Here is how we encode (F, ρ):

Let $T_{1}, T_{2}, \ldots, T_{t}$ be the terms considered in this path.
Let A_{1}, \ldots, A_{t} be the sets of variables set in each of these terms.
Let $\pi_{1} \in\{ \pm 1\}^{\left|A_{1}\right|}, \pi_{2} \in\{ \pm 1\}^{\left|A_{2}\right|}, \ldots, \pi_{t} \in\{ \pm 1\}^{\left|A_{t}\right|}$ be the values assigned to these variables along the path.

In our example, $T_{1}=\left(x_{3} \wedge x_{4}\right), T_{2}=\left(x_{5} \wedge \overline{x_{1}} \wedge x_{3}\right), A_{1}=\left\{x_{4}\right\}, A_{2}=\left\{x_{5}\right\}, \pi_{1}=F$, and $\pi_{2}=T$.

Calculate $T_{1}, \ldots, T_{t}, A_{1}, \ldots, A_{t}, \pi_{1}, \ldots, \pi_{t}$.
For $i=1, \ldots, t$:
For each variable in A_{i}, encode as β_{i} its location in $T_{i}(\in[w])$ and whether or not it is the last bit.

Set σ_{i} to be the assignment to A_{i} that doesn't falsify $\left.T_{i}\right|_{\rho}$ (usually set $\left.T_{i}\right|_{\rho}$ to true)
Replace ρ by $\rho \circ \sigma_{i}$.
In our example, we get $\beta_{1}=2, \beta_{2}=1, \sigma_{1}=\left(x_{4}=T\right)$, and $\sigma_{2}=\left(x_{5}=T\right)$. This gives

$$
\rho=(F, *, T, *, *), \quad \rho \circ \sigma_{1} \circ \sigma_{2}=(F, *, T, T, T) .
$$

