Computer Science 294 Lecture 11 Notes

Daniel Raban

February 21, 2023

1 Proof of Hastad’s Switching Lemma

1.1 Argument via encoding

Last time we introduced Hastad’s switching lemma.

Lemma 1.1 (Hastad’s switching lemma). Suppose f is a width w DNF, and let (J,Z) ~
Ryp. Then for all k,

P(Decision Tree Depth(fsz) > k) < (5pw)F.

We want to think of p ~ 1/(10w) so that we get exponential decay in k. The argument
we will give is not Hastad’s original argument, and we will only get a bound of (9pw)F.
Here is the idea of the argument.

Let the set of bad restrictions be BAD = {(J, z) : DT depth(f;,) > k}. We want to
show that P(; z).r,((J; Z) € BAD) is small. The naive idea is that to show that P(A) is
small, it suffices to show that there exists some event B such that P(B) > MP(A) for some
large M; therefore,

The main step in the proof will be the prove the following encoding lemma.
Lemma 1.2 (Encoding lemma). There exists an injective encoding
E : BAD — (all restrictions) x [2w]® x {£1}*.

Moreover,
E(p) = (poo,p,m),

where o is a restriction that fizes k additional variables.

Here, we should think of the [2w]® x {£1}* part as extra information that would allow
FE tobel to 1.

For any fixed restriction p = (., z), we denote by the weight wt(p) the probability to
sample p when sampling from R,:

wt(p) = pl <%)n—ul‘

Example 1.1. If p = (*,%,+1,—1,41), then the weight is

wt(p) = p° (%)3-

For a set of restrictions S, the weight is

wt(S) = wt(p).

peS
Proof of switching lemma from encoding lemma. Fix B, . Consider the set
BADg , = {p € BAD : 39’ such that E(p) = (¢, 8,7)}.

Then the encoding Ey : p + poo is still 1 to 1 on BADg . We will show that the
probability of E1(BADg) is much bigger than the probability of BADg .

The weight of p = (J, 2) is

while the weight of po o = (J',2') (with |J'| = |J| — k) is

/ 1 —p n_ljl‘
IR

2
ek (12)
2
k

—wito) (157

Therefore,
wt(BADg +) = wt(E1(BADg 1)) (12_pp>k)

and we get

2p k
P((J,Z) € BADg) = P((J,Z) € E1(BADg) - <)

I1—p
k
< 7217 .
=i,

Taking a union bound over (3, 7) ((4w)¥ options),

If p>1/9, then we get
P(sz)~r,((J, Z) € BAD) < (9pw)*.
If p<1/9, then
P7z)~r,((J; Z) € BAD) < <8pw>k = (9pw)*.
So we get the desired bound.

1.2 Proof of the encoding lemma

Here is an example of how the encoding works.

Example 1.2. Suppose we have
F=(ziNzoANx3)V (x3 Axyg) V (25 NTT A x3)

and p sets x1 to False and x3 to True; that is, p = (F, %, T, ,*). Then F' becomes

F|p:x4\/x5.

The decision tree for F'|, looks like

If we have k = 1 and p' = (F,*,T,T,), then we need to “leave a trail of breadcrumbs” to
help us figure out what extra restriction we made and what the original p was.

Proof of the encoding lemma. First, we do the case of k = 1. The restriction p € BAD iff
DT depth(f|,) > 1. Equivalently, f|, is not a constant function. Scanning from left t o
right, find the first term 77 such that 71| p 7 False. Let v1 be an alive variable in 77, and
let o1 assign vy so that 17 is still not falsified. In this case, the mapping should be

p — (pooy,location of vy in T7),

where the location of v; in T3 is a number in {1,2,...,w}.

How do we decode this encoding? Given p/ = p oo, find the first term 77 such that
T{|y # False. Then Ty = T7. Identify v; from the additional information. Make v; alive
again to recover p.

Now we treat the case of k > 1. Given a DNF F and a restriction p = (J, z), let the
canonical decision tree of (F,p) be

Fori=1,2,...,

Look through F for the first term T; such that T;|, # False.

4

If no such term exists, output False.
Otherwise: Let A; be the set of alive variables in T; under p.

Query all variables in A;.

Let m; € {£1}/4 be the answers.

If T;|, is satisfied by 7;, then output True.
Else, extend p by po (m; — A;).

Here are two ways to assign variables:
1. 7: the “adversarial” strategy that ensures CDT(F|,) > k.
2. o: the “breadcrumbs” strategy that allows decoding.

If p € BAD, then DT depth(f|,) > k, so there exists a path of length > k in any
decision tree for f|,. In particular, there is a (partial) path of length = &k in CDT(f|,).
Here is how we encode (F, p):

Let T1,T5,...,T; be the terms considered in this path.
Let Aq,..., A; be the sets of variables set in each of these terms.

Let m € {#1}141l my € {£1}42 . 7, € {1114 be the values assigned to these
variables along the path.

In our example, T1 = (x3 A x4), To = (x5 AT1 A x3), A1 = {24}, Ay = {w5}, m = F,
and m =1T.

Calculate T1,...,Ty, A1, ..., Ay, T, ..., Ty
Fort=1,...,t

For each variable in A;, encode as f3; its location in T; (€ [w]) and whether or
not it is the last bit.

Set o; to be the assignment to A; that doesn’t falsify T;|, (usually set Tj|, to
true)

Replace p by p o o;. O
In our example, we get 1 =2, fa =1, 01 = (x4 =T), and 02 = (x5 = T). This gives

p=(F,*T, %, %), pooiooy = (F,*,T,T,T).

	Proof of Håstad's Switching Lemma
	Argument via encoding
	Proof of the encoding lemma

