
Computer Science 294 Lecture 11 Notes

Daniel Raban

February 21, 2023

1 Proof of H̊astad’s Switching Lemma

1.1 Argument via encoding

Last time we introduced H̊astad’s switching lemma.

Lemma 1.1 (H̊astad’s switching lemma). Suppose f is a width w DNF, and let (J, Z) ∼
Rp. Then for all k,

P(Decision Tree Depth(fJ,Z) ≥ k) ≤ (5pw)k.

We want to think of p ≈ 1/(10w) so that we get exponential decay in k. The argument
we will give is not H̊astad’s original argument, and we will only get a bound of (9pw)k.
Here is the idea of the argument.

Let the set of bad restrictions be BAD = {(J, z) : DT depth(fJ,z) ≥ k}. We want to
show that P(J,Z)∼Rp

((J, Z) ∈ BAD) is small. The naive idea is that to show that P(A) is
small, it suffices to show that there exists some event B such that P(B) ≥MP(A) for some
large M ; therefore,

P(A) ≤ P(B)

M
≤ 1

M
.

The main step in the proof will be the prove the following encoding lemma.

Lemma 1.2 (Encoding lemma). There exists an injective encoding

E : BAD→ (all restrictions)× [2w]k × {±1}k.

Moreover,
E(ρ) = (ρ ◦ σ, β, π),

where σ is a restriction that fixes k additional variables.

1

Here, we should think of the [2w]k ×{±1}k part as extra information that would allow
E to be 1 to 1.

For any fixed restriction ρ = (J, z), we denote by the weight wt(ρ) the probability to
sample ρ when sampling from Rp:

wt(ρ) = p|J |
(

1− p
2

)n−|J |
.

Example 1.1. If ρ = (∗, ∗,+1,−1,+1), then the weight is

wt(ρ) = p2
(

1− p
2

)3

.

For a set of restrictions S, the weight is

wt(S) =
∑
ρ∈S

wt(ρ).

Proof of switching lemma from encoding lemma. Fix β, π. Consider the set

BADβ,π = {ρ ∈ BAD : ∃ρ′ such that E(ρ) = (ρ′, β, π)}.

Then the encoding E1 : ρ 7→ ρ ◦ σ is still 1 to 1 on BADβ,π. We will show that the
probability of E1(BADβ,π) is much bigger than the probability of BADβ,π.

The weight of ρ = (J, z) is

wt(ρ) = p|J |
(

1− p
2

)n−|J |
,

2

while the weight of ρ ◦ σ = (J ′, z′) (with |J ′| = |J | − k) is

wt(ρ ◦ σ) = p|J
′|
(

1− p
2

)n−|J ′|

= p|J |−k
(

1− p
2

)n−|J |+k
= wt(ρ)

(
1− p

2p

)k
.

Therefore,

wt(BADβ,π) = wt(E1(BADβ,π))

(
2p

1− p

)k
,

and we get

P((J, Z) ∈ BADβ,π) = P((J, Z) ∈ E1(BADβ,π)) ·
(

2p

1− p

)k
≤
(

2p

1− p

)k
.

Taking a union bound over (β, π) ((4w)k options),

P(J,Z)∼Rp
((J, Z) ∈ BAD) ≤ (4w)k

(
2p

1− p

)k
=

(
8pw

1− p

)k
.

If p ≥ 1/9, then we get

P(J,Z)∼Rp
((J, Z) ∈ BAD) ≤ (9pw)k.

If p ≤ 1/9, then

P(J,Z)∼Rp
((J, Z) ∈ BAD) ≤

(
8pw

8/9

)k
= (9pw)k.

So we get the desired bound.

1.2 Proof of the encoding lemma

Here is an example of how the encoding works.

3

Example 1.2. Suppose we have

F = (x1 ∧ x2 ∧ x3) ∨ (x3 ∧ x4) ∨ (x5 ∧ x1 ∧ x3)

and ρ sets x1 to False and x3 to True; that is, ρ = (F, ∗, T, ∗, ∗). Then F becomes

F |ρ = x4 ∨ x5.

The decision tree for F |ρ looks like

If we have k = 1 and ρ′ = (F, ∗, T, T, ∗), then we need to “leave a trail of breadcrumbs” to
help us figure out what extra restriction we made and what the original ρ was.

Proof of the encoding lemma. First, we do the case of k = 1. The restriction ρ ∈ BAD iff
DT depth(f |ρ) ≥ 1. Equivalently, f |ρ is not a constant function. Scanning from left t o
right, find the first term T1 such that T1|ρ 6≡ False. Let v1 be an alive variable in T1, and
let σ1 assign v1 so that T1 is still not falsified. In this case, the mapping should be

ρ 7→ (ρ ◦ σ1, location of v1 in T1),

where the location of v1 in T1 is a number in {1, 2, . . . , w}.
How do we decode this encoding? Given ρ′ = ρ ◦ σ, find the first term T ′1 such that

T ′1|ρ′ 6≡ False. Then T1 = T ′1. Identify v1 from the additional information. Make v1 alive
again to recover ρ.

Now we treat the case of k > 1. Given a DNF F and a restriction ρ = (J, z), let the
canonical decision tree of (F, ρ) be

For i = 1, 2, . . . ,

Look through F for the first term Ti such that Ti|ρ 6≡ False.

4

If no such term exists, output False.

Otherwise: Let Ai be the set of alive variables in Ti under ρ.

Query all variables in Ai.

Let πi ∈ {±1}|Ai| be the answers.

If Ti|ρ is satisfied by πi, then output True.

Else, extend ρ by ρ ◦ (πi → Ai).

Here are two ways to assign variables:

1. π: the “adversarial” strategy that ensures CDT(F |ρ) ≥ k.

2. σ: the “breadcrumbs” strategy that allows decoding.

If ρ ∈ BAD, then DT depth(f |ρ) ≥ k, so there exists a path of length ≥ k in any
decision tree for f |ρ. In particular, there is a (partial) path of length = k in CDT(f |ρ).
Here is how we encode (F, ρ):

Let T1, T2, . . . , Tt be the terms considered in this path.

Let A1, . . . , At be the sets of variables set in each of these terms.

Let π1 ∈ {±1}|A1|, π2 ∈ {±1}|A2|, . . . , πt ∈ {±1}|At| be the values assigned to these
variables along the path.

In our example, T1 = (x3 ∧ x4), T2 = (x5 ∧ x1 ∧ x3), A1 = {x4}, A2 = {x5}, π1 = F ,
and π2 = T .

Calculate T1, . . . , Tt, A1, . . . , At, π1, . . . , πt.

For i = 1, . . . , t:

For each variable in Ai, encode as βi its location in Ti (∈ [w]) and whether or
not it is the last bit.

Set σi to be the assignment to Ai that doesn’t falsify Ti|ρ (usually set Ti|ρ to
true)

Replace ρ by ρ ◦ σi.

In our example, we get β1 = 2, β2 = 1, σ1 = (x4 = T), and σ2 = (x5 = T). This gives

ρ = (F, ∗, T, ∗, ∗), ρ ◦ σ1 ◦ σ2 = (F, ∗, T, T, T).

5

	Proof of Håstad's Switching Lemma
	Argument via encoding
	Proof of the encoding lemma

